Jordan Gardner
Tiffany Hilton
MATH 1040
15 November 2016

Project Part 5 Revised

A confidence interval is a range of values so defined that there is a specified probability that the value of a parameter lies within it. It gives two points that are most likely to contain the value looking for.

The requirements for a confidence interval of a population proportion is that it has to be a Simple Random Sample, that $\mathrm{np}(1-\mathrm{p})$ is $\geqslant 10$, and that n is $\leqslant 0.05 \mathrm{~N}$. The requirements for a confidence interval of a population mean are that it needs to be a Simple Random Sample, that n is $\leqslant .05 \mathrm{~N}$ and that it's a normal population or n is $\geqslant 30$.

Yellow candies confidence interval. STAT, TESTS, 1-PropZInt, X: 726, n: 3551, CLevel: .99, Calculate: (.18702, .22188).

This means that with 99% confidence we can determine that the true proportion of yellow candies is between . 18702 and .22188 .

Based on my interval for the true proportion of yellow candies, the proportion of yellow candies in the single bag of candy I purchased is not a likely value for the true population proportion. This is because my proportion of yellow candies was (10/59=). 1694915 which is lower than the confidence interval previously mentioned.

STAT, TESTS, TInterval, Mean(x-bar): 59.183, s:3.11, n: 60, C-Level: .95, Calculate: (58.38, 59.986).

This means that with 95% confidence, the mean number candies in the bags of Skittles is between 58.38 and 59.986 , or 59 and 60 when rounded to the whole.

My bag contained 59 Skittles which is a likely value given the confidence interval.

